Genetic Identification: The Contribution of STR Markers and Genetic Profile Databases in Forensic Investigations

Authors

  • Ana Carolina Campos Batista Universidade de Brasília (UnB), DF, Brasil
  • Victória Paz Machado Universidade de Brasília (UnB), DF, Brasil
  • Jesse Pereira Machado Viana Universidade de Brasília (UnB), DF, Brasil
  • Aline Costa Minervino Setor de Banco de Perfis Genéticos, Diretoria Técnico-Científica, Polícia Federal, Brasília (DF), Brasil
  • Marcelo Pereira Mendes Setor de Banco de Perfis Genéticos, Diretoria Técnico-Científica, Polícia Federal, Brasília (DF), Brasil
  • Ronaldo Carneiro da Silva Junior Setor de Banco de Perfis Genéticos, Diretoria Técnico-Científica, Polícia Federal, Brasília (DF), Brasil

DOI:

https://doi.org/10.17063/bjfs12(2)y2024105-124

Keywords:

STR, Forensic genetics, Database, Genetic markers, Forensic DNA

Abstract

The discovery of genetic molecular markers has revolutionized the scientific research and gave rise to the most diverse applications in the use of DNA for genetic identification.  In forensic genetics, for instance, the use of markers has enabled the improvement of methodologies used in human genetic identification, for civil, criminal and humanitarian purposes. In 1997 the Federal Bureau of Investigation (FBI) established the CODIS Core Loci, a set of genetic markers to be used in human identification analyses. CODIS (Combined DNA Index System) is used to manage genetic profiles and more than 50 countries have joined the tool, including Brazil, which in 2013 founded the Integrated Network of DNA Databases (Rede Integrada de Perfis Genéticos - RIBPG). This network's main objective is to provide the exchange of genetic profiles of interest to Justice, obtained in official forensic laboratories.

References

Mendel GJ. “Versuche über Pflanzen-Hybriden” [Experiments Concerning Plant Hybrids]; 1866. https://doi.org/10.5962/bhl.title.61004

Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98(3):503–17. https://doi.org/10.1016/S0022-2836(75)80083-0

Grover A, Sharma PC. Development and use of molecular markers: past and present. Crit Rev Biotechnol. 2016;36(2):290–302. https://doi.org/10.3109/07388551.2014.959891

Ge J, Eisenberg A, Budowle B. Developing criteria and data to determine best options for expanding the core CODIS loci. Investig Genet. 2012 [citado 6 de fevereiro de 2023];3(1):1. https://doi.org/10.1186/2041-2223-3-1

Maeda H. Applicability of an immuno-microsphere technique for a forensic identification of ABO blood types: the use of fluorescent microspheres. Nihon Hoigaku Zasshi. 1989;43(4):322–7.

ESPÍNDULA A. Perícia Criminal e Cível. Uma visão completa para peritos e usuários da perícia. Millennium. 2006;2ª.ed.

Langlois MR, Delanghe JR. Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem. 1996;42(10):1589–600. https://doi.org/10.1093/clinchem/42.10.1589

Wu YY, Csako G. Rapid and/or high-throughput genotyping for human red blood cell, platelet and leukocyte antigens, and forensic applications. Clin Chim Acta. 2006;363(1–2):165–76. https://doi.org/10.1016/j.cccn.2005.07.010

Garrido RG. Evolução dos processos de identificação humana: Das características antropométricas ao DNA. Genet Esc. 2009;4(2):38–40. https://doi.org/10.55838/1980-3540.ge.2009.81

Jeffreys AJ, Brookfield JF, Semeonoff R. Positive identification of an immigration test-case using human DNA fingerprints. Nature. 1985;317(6040):818–9. https://doi.org/10.1038/317818a0

Wolff R, Nakamura Y, Oldelberg S, Shiang S, White R. Generation of Variability at VNTR Loci in Human DNA. DNA Fingerprinting: Approaches and Applications. 1991;20-38. https://doi.org/10.1007/978-3-0348-7312-3_2

Goodwin W, Linacre A, Hadi S. An Introduction to Forensic Genetics. John Wiley & Sons. 2007.

Velho JA, Geiser GC, Espindula A. Ciências Forenses: Uma Introdução Às Principais Áreas da Criminalística Moderna. Millennium. 2017.

Weber JL, May PE. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet. 1989;44(3):388–96.

Bustin SA. The PCR Revolution: Basic Technologies and Applications. Cambridge University Press. 2010. https://doi.org/10.1017/CBO9780511818974

Mullis KB. The Nobel Prize in Chemistry 1993. Nobel Prize Outreach AB 2023.2023;

Canene-Adams K. General PCR: Methods in Enzymology. Academic Press. 2013;p-291-298. https://doi.org/10.1016/B978-0-12-418687-3.00024-0

Lenstra A. The applications of the polymerase chain reaction in the life sciences. Cellular and Molecular Biology-Noisy le Grand. 1995; p.603-314.

Burns J, Melmer G, Rommens J M, Riodan J R, BUCHWALD M. Identification of sequences of chromosome 7 that are expressed in sweat gland epithelial cells. Human genetics. 1990; p.151-156. https://doi.org/10.1007/BF00193187

Gray M R. Detection of DNA sequence polymorphisms in human genomic DNA by using denaturing gradient gel blots. American journal of human genetics. 1992;p.331.

Jorgenson J, Lukacs K. Capillary zone electrophoresis. Science. 1983;266-272. https://doi.org/10.1126/science.6623076

Mayrand PE, Robertson J, Ziegle J, Hoff LB, McBride LJ, Chamberlain JS, Kronick MN. Automated genetic analysis. Annales de Biologie Clinique. 1991;p224-230.

Jobling MA, Gill P. Encoded evidence: DNA in forensic analysis. Nature Reviews Genetics. 2004;p.739-751. https://doi.org/10.1038/nrg1455

Biesecker B. Genetic counseling and the central tenets of practice. Cold Spring Harbor Perspectives in Medicine. 2020. https://doi.org/10.1101/cshperspect.a038968

Hares DR. Selection and implementation of expanded CODIS core loci in the United States. Forensic Sci Int Genet. 2015;17:33–4. https://doi.org/10.1016/j.fsigen.2015.03.006

van der Sanden BPGH, Corominas J, de Groot M, Pennings M, Meijer RPP, Verbeek N, et al. Systematic analysis of short tandem repeats in 38,095 exomes provides an additional diagnostic yield. Genet Med. 2021;23(8):1569–73. https://doi.org/10.1038/s41436-021-01174-1

Press MO, Carlson KD, Queitsch C. The overdue promise of short tandem repeat variation for heritability. Trends in genetics: TIG. 2014;30(11). https://doi.org/10.1016/j.tig.2014.07.008

Katsanis SH, Wagner JK. Characterization of the standard and recommended CODIS markers. J Forensic Sci. 2013;58 Suppl 1(Suppl 1):S169-72. https://doi.org/10.1111/j.1556-4029.2012.02253.x

Aitken CGG, Taroni F, Bozza S. Statistics and the evaluation of evidence for forensic scientists 3e. 3o ed. Hoboken, NJ: Wiley-Blackwell; 2020. https://doi.org/10.1002/9781119245438

Doolittle M. The Role of Statistics in Forensic Science. Center for Statistics and Applications in Forensic Evidence. 2019.

Novokmet N, Peričić Salihović M, Škaro V, Projić P, Šarac J, Havaš Auguštin D, et al. Influence of genetic substructuring of statistical forensic parameters on genetic short tandem repeat markers in the populations of Southeastern Europe. Croat Med J. 2022;63(3):244–56. https://doi.org/10.3325/cmj.2022.63.244

Souto L. Alguns conceitos de genética populacional com relevância em genética forense. Princípios de genética forense. Imprensa da Universidade de Coimbra; 2016. p. 124–42. https://doi.org/10.14195/978-989-26-0957-7_5

Huston KA. Statistical analysis of STR data. Profiles in DNA, v. 1, n. 3, p. 14-15, 1998.

Góes AC de S, da Silva DA, Fonseca Gil EH, da Silva MTD, Pereira RW, de Carvalho EF. Allele frequencies data and statistic parameters for 16 STR loci-D19S433, D2S1338, CSF1PO, D16S539, D7S820, D21S11, D18S51, D13S317, D5S818, FGA, Penta E, TH01, vWA, D8S1179, TPOX, D3S1358-in the Rio de Janeiro population, Brazil. Forensic Sci Int. 2004;140(1):131–2. https://doi.org/10.1016/j.forsciint.2003.11.023

Rodrigues EMR, Palha T de JBF, dos Santos SEB. Allele frequencies data and statistic parameters for 13 STR loci in a population of the Brazilian Amazon Region. Forensic Sci Int. 2007;168(2–3):244–7. https://doi.org/10.1016/j.forsciint.2006.03.003

del Castillo DM, Perone C, de Queiroz AR, Mourão PHO, de Souza Vasconcellos L, do Nascimento MA, et al. Populational genetic data for 15 STR markers in the Brazilian population of Minas Gerais. Leg Med (Tokyo). 2009;11(1):45–7. https://doi.org/10.1016/j.legalmed.2008.07.005

Wolfgramm E de V, Silva BC, Aguiar VR da C, Malta FSV, de Castro AM, Ferreira AC de S, et al. Genetic analysis of 15 autosomal and 12 Y-STR loci in the Espirito Santo State population, Brazil. Forensic Sci Int Genet. 2011;5(3):e41-3. https://doi.org/10.1016/j.fsigen.2010.05.001

Ribeiro-Rodrigues EM, Palha T de JBF, Bittencourt EA, Ribeiro-Dos-Santos A, Santos S. Extensive survey of 12 X-STRs reveals genetic heterogeneity among Brazilian populations. Int J Legal Med. 2011;125(3):445–52. https://doi.org/10.1007/s00414-011-0561-x

Grattapaglia D, Kalupniek S, Guimarães CS, Ribeiro MA, Diener PS, Soares CN. Y-chromosome STR haplotype diversity in Brazilian populations. Forensic Sci Int. 2005;149(1):99–107. https://doi.org/10.1016/j.forsciint.2004.06.003

Gontijo CC, Mendes FM, Santos CA, Klautau-Guimarães M de N, Lareu MV, Carracedo Á, et al. Ancestry analysis in rural Brazilian populations of African descent. Forensic Sci Int Genet. 2018;36:160–6. https://doi.org/10.1016/j.fsigen.2018.06.018

Aguiar VR da C, Wolfgramm E de V, Malta FSV, Bosque AG, Mafia A de C, Almeida VC de O, et al. Updated Brazilian STR allele frequency data using over 100,000 individuals: an analysis of CSF1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, FGA, Penta D, Penta E, TH01, TPOX and vWA loci. Forensic Sci Int Genet. 2012;6(4):504–9. https://doi.org/10.1016/j.fsigen.2011.07.005

Louzada L, ROHDEN ALM. Banco de Perfis Genéticos Para Fins de Investigação Criminal no Brasil. DataPrivacyBR Research. 2022.

CODIS and NDIS Fact Sheet. Federal Bureau of Investigation. 2016.

U.S. Department of Justice Office of the Inspector General. Reports - Federal Bureau of Investigation. The Combined DNA Index System. 2001.

Brasil. Ministério da Justiça e Segurança Pública. Comitê Gestor da Rede Integrada de Bancos de Perfis Genéticos. Manual De Procedimentos Operacionais Da Rede Integrada De Bancos De Perfis Genéticos - Versão 5. Resolução nº 17, de 14 de fevereiro de 2022, do Comitê Gestor da RIBPG. 2022.

Brasil. Presidência da República. Casa Civil. Subchefia para Assuntos Jurídicos. Decreto nº 7.950, de 12 de março de 2013. DOU - Seção 1 - 13/3/2013. p. 4.

Brasil. Ministério da Justiça e Segurança Pública. Rede Integrada de Bancos de Perfis Genéticos. Curso De Administrador De Bancos De Perfis Genéticos E Uso Do Codis. 2019.

Lucy D. Introduction to statistics for forensic scientists. Hoboken, NJ: Wiley-Blackwell; 2005.

Brasil. Ministério da Justiça e Segurança Pública. Rede Integrada de Bancos de Perfis Genéticos. XVI Relatório Semestral do Comitê Gestor da RIBPG. 2022.

Brasil. Presidência da República. Casa Civil. Subchefia para Assuntos Jurídicos. Lei nº 7.210, de 11 de julho de 1984.

DNA confirma que rapaz de Goiânia é menino sequestrado em Brasília em 1986. Agência Brasil - Empresa Brasil de Comunicação. 2002.

STF autoriza exame de DNA em placenta de Gloria Trevi. Estadão. 2002.

RIBPG. XIX RELATÓRIO DA REDE INTEGRADA DE BANCOS DE PERFIS GENÉTICOS. Brasília: Comitê Gestor RIBPG, 2023. Disponível em: https://www.gov.br/mj/ptbr/assuntos/sua -seguranca/seguranca -publica/ribpg

Published

2024-08-23

How to Cite

Campos Batista, A. C. ., Paz Machado, V. ., Pereira Machado Viana, J. ., Costa Minervino, A. ., Pereira Mendes, M., & Carneiro da Silva Junior, R. (2024). Genetic Identification: The Contribution of STR Markers and Genetic Profile Databases in Forensic Investigations. Brazilian Journal of Forensic Sciences, Medical Law and Bioethics, 12(2), 105–124. https://doi.org/10.17063/bjfs12(2)y2024105-124